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Modeling of Nonlinear Active Regions in TLM

Peter Russer, Poman P. M. So, and Wolfgang J. R. Hoefer

Abstract—The modeling of active and nonlinear subregions of mi-
crowave structures using the transmission line matrix (TLM) method is
discussed. It is shown that a correct modeling of subregions with
negative conductivity is possible by lumped circuit elements connected to
the TLM mesh nodes.

1. PrincIpLE oF LuMpPED ELEMENT MODELING

HE TRANSMISSION LINE matrix method, developed by
Johns and Beurle [1] has emerged as a powerful method for
computer modeling of electromagnetic fields [2], [3], and linear
and nonlinear lumped element networks [4], [5]. Also the model-
ing of nonlinear passive subregions has already been treated [6].
It is well known that lossy subregions in TLM can be modeled
by connecting a lumped resistor or an infinitely long transmis-
sion line stub across each mesh node [7]. While the resulting
attenuation constant of the mesh is finite at low frequencies, it
increases to infinity at the cutoff frequencies of the discrete
network [2], [3]. Modeling regions with negative conductivity
may yield uncontrollable instabilities at these frequencies. In
reality, distributed active regions exhibit an intrinsic cutoff
frequency. Correct TLM modeling must therefore include the
real cutoff behavior in the discrete model, and the cutoff fre-
quency of the TLM mesh must be sufficiently higher than the
physical cutoff frequency of the real continuous active region.
We investigate initially the general case of a nonlinear admit-
tance connected in parallel to a TLM shunt node. In general the
relation between the node voltage v(¢) and the current i(#)
flowing into the nonlinear admittance will be governed by a
nonlinear system of first order ordinary differential equations, if
the nonlinear admittance can be modeled by lumped circuit
elements. In the shunt TLM model, voltage wave amplitudes are
used instead of voltage and current. We therefore substitute the
voltage wave amplitudes vi(#) = [v(¢) + i(¥)/ Y,1/2, and vi(?)
= [v(?) — i(¢)/ Y,1/2 where vi(?) describes a voltage wave
travelling from the TLM node toward the nonlinear admittance,
and vé(t) describes a voltage wave incident from the nonlinear
admittance on the TLM node. Y, is the real characteristic
admittance of the stub. Y, may be chosen arbitrarily, however
by an appropriate choice of Y, calculations may be simplified.
We consider the stub transmission line between the TLM node
and the nonlinear admittance to be of infinitesimal length. This
transmission line has no physical effect but ensures that by
principle of causality the voltage wave reflected from the nonlin-
ear admittance, vi(f), will be a nonlinear function of the voltage
wave vl(f,) incident on the nonlinear admittance with ¢, €
(— oo, t]. We may model our lumped element network by a
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Fig. 1. Transmission line with voltage wave source parallel to TLM shunt

node.

matched transmission line with characteristic admittance ¥, and
an impressed voltage wave source vé(t) (see Fig. 1).

In the case of band limited signals, where all signals are
completely determined by discrete sample values at time inter-
vals At we may denote the time discrete description Vy =
vs(kAt), Vi = vs(kAt). The scattering of impulses at a shunt
mode loaded with a nonlinear admittance is described by

er = Sle,

(1)

where
; ; ; 4T
kV' = [kV{,kV{,sz’,kW,sz’] s
and
T
V= [ler,szraszr’kIﬁr’szr]

are the voltage wave vectors incident on and reflected from the
node. The subscripts 1 to 5 refer to the branch numbers in Fig.
1. The characteristic impedance of the stub line connecting the
node and the lumped load element may be chosen arbitrarily.
We introduce the stub line characteristic admittance y, normal-
ized to the TLM mesh line characteristic admittance. Choosing
¥y, = 4, we can write (1) as

r 1
1

N
!
Rlw

i 5 1y
V2 % - 73{ % % 1 V2
Vil =1 % i o~ 3 1 V3 (2)
A I B 17
‘ Vs % % % 1 ol, Vs

For y, = 4 the matrix element Ss5 vanishes, and the voltage
pulse V5 scattered from the node to the load depends only on
the voltage pulses V7 to ¥, incident from the mesh lines and
not on the voltage pulse , V5 incident from the load element on
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Fig. 2. Layout of TLM grid of diode oscillator.
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Fig. 3. Time evolution of oscillator output waveform.

the mesh node. Therefore , VS may be computed directly from
the incident voltage pulses without solving a nonlinear equation.
The voltage wave pulses ,V,/(z, x) incident on a TLM mesh
node depend on the voltage wave pulses , _,V,/(zy, X;) emerg-
ing from the neighbouring nodes as follows:

k+1V1i(z’ x) =Vi(z, x ~ 1)
kriVa (2, x) =V (2 - 1, x)
ks1Vi(z, x) =V (z, x + 1)

k+1I/:1_;(Z, X) =kV2r(Z + 1, X).

II. MODELING OF AN ACTIVE DIODE

As an example we discuss a simple active diode model with an
intrinsic cutoff frequency. The equivalent circuit comprises a
nonlinear conductance G(v,). a linear series resistor R, and a
linear parallel capacitor C. The diode is assumed to have a
region of negative differential conductance. The diode is dis-
tributed over a number N of TLM mesh nodes. We must thus
connect to each of these mesh nodes the diode model with all
impedances multiplied by N and all admittances divided by N.

()

The network equations for the equivalent diode circuit, scaled by

.. 1o dvy L
Nare v — v, = NRi, i - I = NC*“;, and L= ‘lg_f(v]t).
Expressing v(¢) and i(?) by vi(¢) and vi(#) we-obtain
du(t) 1 1-Tg
— + - t)) = 2(t 4)
S ss(u()) = —=) @

with the variable u(t) = vé(t) — I'pvi(?), the time constant 7

1 . - NRY, -1
= | R + ——— | C, the reflection coefficient 'y = ————,
NY, : NRY, + 1

and the function g(uw) = u + J((1+ NRY,)u). Equation

NY,
(4) can be integrated numerically using the same time step At as
the TLM field simulation in the propagation space adjacent to
the diode. We introduce the nonlinear conductance G(vy) by
Sf(vy) = v;G(v)) and assume that G(v,) varies only slowly from
one time step to the next, so that its value can be taken from the
previous iteration. The discretized formulation of (4) is then

. )
i k195 + 5105 — Tp 105
V= (5)
’ k-18
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Fig. 4. Output spectrum of oscillator in steady state.
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with
1
w1 =Tg + - 1+|R- —Yr G(k_lVl) (6)
At 1
raB=14—|1+ R+ )G(k_lVl) (7)
T Y,

ko1Vi =k 1Ve Vi = NRY, (Vi — V). (8)

The time step is Af = Al/c, where Al is the TLM mesh width,
and c is the wave velocity on the TLM lines.

III. A Diobe OSCILLATOR

We have implemented the above algorithm and investigated
the time evolution of the field in a planar diode oscillator. For
the active diode a simple model was chosen with the nonlinear
conductance described by the cubic polynomial voltage current
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Two-dimensional field distribution in oscillator.

characteristic

f(vl) = G(”l)”l = _IGlmaxl[l

(2] o

2
The differential conductivity — | Gy e 1|1 — (—vi) ] is nega-
Um
tive for v, e(-v,,v,). The maximum negative slope is
— | Gymax | fOr v; =0, R
Fig. 2 shows the geometry of the oscillator in a reduced
height WR-28 waveguide. All sidewalls and the inductive iris
are electric walls, while the long output waveguide section is
terminated in a wideband matched load (Johns matrix wall). The
diode is centered in the rectangular resonator:
The following figures have been obtained by TLM simulation
for the following diode characteristics: R = 4, C = 0.07pF,
G max = —4mS. The diode is distributed over an area of 6A1%
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and the height of the planar structure is # = 0.5 mm. The
corresponding characteristic admittance of the 2D-TLM mesh
lines must be Y, = Al/(V219yh = 0.92 mS, and hence ¥, =
4Y, = 3.68 mS. The air-filled resonator measures 29 A/ in
width and 16 A/ in length, with A/ = 0.2452 mm. The iris
walls are A/ thick and 13 A7 wide. Figs. 3-5 show the behavior
of the oscillator model. The oscillation builds up exponentially
from the noise injected into the mesh to start the process (see
Fig. 3). The amplitude then saturates when the nonlinear con-
ductance is driven into positive values. The steady-state wave-
form reveals the presence of a third harmonic that is ‘also clearly
visible in the spectrum of the output signal (see Fig. 4). Due to
the low cutoff frequency of the diode (f, = 71 GHz), the third
harmonic is 20 dB below the fundamental wave. No oscillations
at the TLM mesh cutoff frequency (f.,, = 306 GHz) have been
observed, which indicates, that instabilities at this frequency
have clearly been suppressed through the inclusion of the diode
capacitance in the algorithm. The field distribution in Fig. 5
demonstrates the interaction between the diode and the structure.

IV. CoNCLUSION

A TLM method for modeling distributed circuits containing
nonlinear active elements and structures was demonstrated. The
scattering properties of the nonlinear element are expressed in
terms of its differential equations that are solved by stepwise
integration with the time step of the TLM algorithm. A cavity
oscillator with an active diode with a finite cutoff frequency has
been modeled. Spurious oscillations of the TLM mesh that
regularly occur when including negative’ conductivity or pulse

13

reflection coefficients larger than unity were effectively sup-
pressed.
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