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Modeling of Nonlinear Active Regions in TLM
Peter Russer, Poman P. M. So, and Wolfgang J. R. Hoefer

Abstract—The modeling of active and nonlinear subregions of mi-
crowave structures using the transmission line matrix (TLM) method is
discussed. It is shown that a correct modeling of subregions with
negative conductivity is possible by lumped circuit elements connected to
the TLM mesh nodes.

I. PRINCIPLE OF LUMPED ELEMENT MODELING

T HE TRANSMISSION LINE matrix method, developed by

Johns and Beurle [1] has emerged as a powerful method for

computer modeling of electromagnetic fields [2], [3], and linear

and nonlinear lumped element networks [4], [5]. Also the model-

ing of nonlinear passive subregions has rdready been treated [6].

It is well known that lossy subregions in TLM can be modeled

by connecting a lumped resistor or an infinitely long transmis-

sion line stub across each mesh node [7]. While the resulting

attenuation constant of the mesh is finite at low frequencies, it

increases to infinity at the cutoff frequencies of the discrete

network [2], [3]. Modeling regions with negative conductivity

may yield uncontrollable instabilities at these frequencies. In

rerdity, distributed active regions exhibit an intrinsic cutoff

frequency. Correct TLM modeling must therefore include the

real cutoff behavior in the discrete model, and the cutoff fre-

quency of the TLM mesh must be sufficiently higher than the

physical cutoff frequency of the real continuous active region.

We investigate initially the general case of a nonlinear admit-

tance connected in parallel to a TLM shunt node. In general the

relation between the node voltage U(t) and the current i(t)

flowing into the nonlinear admittance will be governed by a

nonlinear system of first order ordinary differential equations, if

the nonlinear admittance can be modeled by lumped circuit

elements. In the shunt TLM model, voltage wave amplitudes are

used instead of voltage and current. We therefore substitute the

voltage wave amplitudes u;(t) = [v(t) + i(t)/ Y,]/2, and v:(t)

= [u(t) – i(t)/ Y,]/2 where u:(t) describes a voltage wave

traveling from the TLM node toward the nonlinear admittance,

and u{(t) describes a voltage wave incident from the nonlinear

admittance on the TLM node. YF is the real characteristic

admittance of the stub. Y, may be chosen arbitrarily, however

by an appropriate choice of Y, calculations may be simplified.

We consider the stub transmission line between the TLM node

and the nonlinear admittance to be of infinitesimal length. This

transmission line has no physical effect but ensures that by

principle of caus~ity the voltage wave reflected from the nordin-

ear admittance, u:(t), will be a nonlinear function of the voltage

wave v;( t,)incident on the nonlinear admittance with t ~e

(– CO,t]. We may model our lumped element network by a
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Fig. 1. Transmission line with voltage wave source parallel to TLM shunt

node.

matched transmission line with characteristic admittance Y, and

an impressed voltage wave source u:(t) (see Fig. 1).

In the case of band limited signals, where all signals are

completely determined by discrete sample values at time inter-

vals A t we may denote the time discrete description ~ V5r =

v;( kA t), ~ V; = uj( kA t). The scattering of impulses at a shunt
mode loaded with a nonlinear admittance is described by

~v r = skv~, (1)

where

,V’ = [kv[,kv;,kv:,kv:, kv;]=,

and

.J’” = [kv;>kv;, kv;, kvi>kv;]T

are the voltage wave vectors incident on and reflected from the

node. The subscripts 1 to 5 refer to the branch numbers in Fig.

1. The characteristic impedance of the stub line connecting the

node and the lumped load element may be chosen arbitrarily.

We introduce the stub line characteristic admittance y, normal-

ized to the TLM mesh line characteristic admittance. Choosing

Yr = 4, we can write (1) as

k
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V-3
V4
V5

——

_~ ~ 1 1
4 4 z z

1’ J/-l

V2

V3 . (2)

V4

V5

For y, = 4 the matrix element S55 vanishes, and the voltage

pulse ~ V: scattered from the node to the load depends only on

the voltage pulses ~VI to ~ V4i incident from the mesh lines and

not on the voltage pulse ~ V.r incident from the load element on
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Fig. 2. Layout of TLM grid of diode oscillator.
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Fig. 3. Time evolution of oscillator ontput waveform.

the mesh node. Therefore ~v~ may be computed directly from The network equations for the equivalent diode circuit, scaled by

the incident voltage pulses without solving a nonlineq equation. 1 dul J 1

The voltage wave pulses ~ J“;( Z, x) incident on a TLM mesh
Narev–vl == NRi, i–il= ~Cz, and il = —-#(vIL).

node depend on the voltage wave pulses k. 1~~( ZI, XI) ernW- Expressing LI(t) and i(l) by vi$(t) and v&(t) we-obtain

ing from the neighboring nodes as follows:

k+lJ’?(z> ~) =k~:(z, x - 1)

du(t)
--~ + :g(u(t)) = + v;(t) (4)

k+,~i(z> x) =. J’Y(Z- 1,x)

k+l~;(z> x) =k~llz> x+ 1)

k+l~;(z, x) =kv[(z+ 1,X). (3)

II. MODELING OF AN ACTNE DIODE

As an example we discuss a Simple active diode model with an

intrinsic cutoff frequency. The equivalent circuit comprises a

nonlinear conductance G( v 1), a ha’ series resistor R > and a

linear parallel capacitor C. The diode is assumed to have a

region of negative differential conductance. The diode is dis-

tributed over a number N of TLM mesh nodes. We must thus

connect to each of these mesh nodes the diode model with all

impedances multiplied by N and all admittances divided by N.

with the variable U(t) = v:(t) – I’~ v.$(t), the time constant 7

()

1 NR Y, --1
. R + ;= C, the reflection coefficient I’~ = —-—

r NRY, + 1’
,

and the function g(u) = u + ~ Y((I + NR yr)~). Equation

(4) can be integrated numerically u~ing the same time step At as

the TLM field simulation in the propagation space adjacent to

the diode. We introduce the nonlinear conductance G( Vl) by

Y(v.l) = VIG(V ~) and assume that G(vl) varies only slowly from
one time step to the next. so that its value can be taken from the

previous iteration. The discretized formulation of (4) is then
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Fig. 5. Two-dimensional field distribution in oscillator.

with

‘-lQ=rR+:[l+(R-*)G’-vl’l’”

‘-16= ’++[l+(R+*)G(-V)I ‘7)

The time step is At = Al/c, where A 1 is the TLM mesh width,

and c is the wave velocity on the TLM lines,

111. A DIODE OSCILLATOR

We have implemented the above algorithm and investigated

the time evolution of the field in a planar diode oscillator. For

the active diode a simple model was chosen with the nonlinear

conductance described by the cubic polynomial voltage current

characteristic

The

tive

f(vl) = G(v, )ul = -

differential conductivity

G

[
IInaxl 1

-l Glmaxl

for v, e (– u~, Urn). The maxim..

( )]1V12
.——

3 Vm,
“,. (9)

2

( )]

1– ~ is nega-
Vm

m negative slope is

Fig. 2 shows the geometry of the oscillator in a reduced

height WR-28 waveguide. All sidewalls and the inductive iris

are electric walls, while the long output wa~eguide section is

terminated in a wideband matched load (Johns matrix wall). The

diode is centered in the rectangular resonator.
The following figures have been obtained by TLM simulation

for the following diode characteristics: R = 4 !2, C = 0.07pF,
G ~- = – 4 mS. The diode is distributed over an area of fjA 12
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and the height of the planar structure is h = 0.5 mm. The

corresponding characteristic admittance of the 2D-TLM mesh

lines must be YO = Al/( ~qoh = 0.92 mS, and hence Y, =

4 YO = 3.68 mS. The air-filled resonator measures 29 Al in

width and 16 A 1 in length, with A 1 = 0.2452 mm. The iris

walls are Al thick and 13 Al wide. Figs. 3-5 show the behavior

of the oscillator model. The oscillation builds up exponentially

from the noise injected into the mesh to start the process (see

Fig. 3). The amplitude then saturates when the nonlinear con-

ductance is driven into positive values. The steady-state wave-

form reveals the presence of a third harmonic that is “also clearly

visible in the spectrum of the output signal (see Fig. 4). Due to

the low cutoff frequency of the diode (~c = 71 GHz), the thkd

harmonic is 20 dB below the fundamental wave. No oscillations

at the TLM mesh cutoff frequency (~c~ = 30$ GHz) have been

observed, which indicates, that instabilities at this frequency

have clearly been suppressed through the inclusion of the &lode

capacitance in the algorithm. The field distribution in Fig. 5

demonstrates the” interaction between the diode and the structure.

IV. CONCLUSION

A TLM method for modeling distributed circuits containifig

nonlinear active elements and structures was demonstrated. The

scattering properties of the nonlinear element are expressed in

temp of its di.fferentird equations that are solved by slepwise

integration with the time step of the TLM algorithm.. A cavity
oscillator with aq active diode with a finite cutoff frequency has

been, modeled. Spurious oscillations of the TLM mesp that

regularly occur when including negative’ conductivity or pulse

reflection coefficients larger than unity were effectively sup-
pressed.
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